ESTUDIO DE EVALUACIÓN DE EFECTIVIDAD BIOLÓGICA DEL PRODUCTO **BRASINOFORTE**, COMO REGULADOR DE CRECIMIENTO (TIPO 1), EN EL CULTIVO DE **TRIGO** REALIZADO EN EL MUNICIPIO DE PAJACUARÁN, MICHOACÁN.

a) NOMBRE, CURP Y DIRECCION DEL RESPONSABLE DEL ESTUDIO:

Dr. ALBERTO MARGARITO GARCÍA MUNGUÍA. PROFESOR INVESTIGADOR.

almagamu@hotmail.com

CURP: GAMA850405HHGRNL08

Km. 3 Carretera a la Posta, Jesús María, Aguascalientes. México. Universidad Autónoma de Aguascalientes

Centro de Ciencias Agropecuarias

Departamento de Fitotecnia

Jesús María, Aguascalientes

CP. 20131

b) EMPRESA INTERESADA: QUÍMICA LUCAVA, S.A. de C.V. Carretera Panamericana, Km 284, 2da. Fracción de Crespo, C.P. 38110, Celaya, Gto. México.

c) Institución que realizó el estudio de Efectividad Biológica.

Universidad Autónoma de Aguascalientes. Centro de Ciencias Agropecuarias Jesús María, Aguascalientes, México.

d) Tipo de Insumo

()	Fertilizante orgánico	()	Mejorador de suelo orgánico o biológico
(X)	Regulador de crecimiento	()	Inoculante
()	Humectante	()	Enraizador
()	Nutriente		

e) Título del Trabajo:

Estudio de evaluación de efectividad biológica del producto BRASINOFORTE, como regulador de crecimiento, en el cultivo de trigo realizado en el municipio de Pajacuarán, Michoacán.

f) Introducción

El trigo (*Triticum aestivum* L.) es uno de los principales cultivos de cereales producidos, consumidos y comercializados mundialmente. Proporciona más del 20% de las calorías y es un alimento básico en el 35% de la población global (Kiplagat, 2005; Ricci *et al.*, 2012); no obstante, el ingreso al mercado internacional difiere del hemisferio en que se cultiva (Barberis, 2014). A nivel mundial la producción del cereal ha mostrado una tendencia levemente creciente desde los años '90, aunque no tan importante como el incremento que se produjo en el cultivo de soja. En la campaña 2012/13 la producción de trigo fue de alrededor de 655 millones de toneladas (Barberis, 2014), mientras en la campaña 2013/14 la producción fue de 716 millones de toneladas y en la campaña 2014/ 15 se incrementó a 726 millones de toneladas (USDA, 2015).

En México, este cereal fue introducido por los españoles en 1529 y desde entonces forma parte importante de la dieta de la población mexicana, por la disponibilidad y el costo, que lo hace accesible a gran parte del consumidor en diferentes formas: tortilla y otros (Shewry, 2009). Cabe mencionar, que el *Triticum vulgare* se divide en diferentes grupos que son usados para la elaboración de harinas para pan, pasteles, galletas o productos similares. El *Triticum durum* se emplea fundamentalmente para la producción de sémola la cuál es un producto granular del endospermo, el cual difiere de la harina en el tamaño de sus partículas y en que sólo puede ser producido a partir de trigos duros y es usado para la fabricación de pastas alimenticias y más recientemente en la producción de alimento para las granjas de peces y camarones (Pomeranz, 1988).

1.1. Producción en México

En el año 2015, México tuvo una producción de trigo en grano de 3,710,706.27 toneladas, siendo los principales estados productores Sonora, Baja California, Guanajuato, Sinaloa y Chihuahua. A su vez, obtuvo una producción de trigo forrajero de 74,667.68 toneladas a nivel nacional, destacando los estados de Chihuahua y Coahuila como los mayores productores. (SAGARPA, 2015).

Sin embargo, año con año, la producción de trigo se ve amenazada por algunos factores bióticos que afectan al rendimiento, entre los que destacan las enfermedades causadas por hongos, virus y bacterias, así como las plagas que se alimentan de las plantas, impidiendo su crecimiento, causando daños severos en su fisiología, pudiendo ocasionar la muerte de ésta (Rawson & Macpherson, 2001).

g) Objetivos:

- 1. Evaluar la eficacia biológica del producto BRASINOFORTE, como regulador de crecimiento, en el cultivo de trigo.
- 2. Determinar los efectos fitotóxicos posibles del producto BRASINOFORTE, como regulador de crecimiento en el cultivo de trigo.

h) Nombre comercial y/o experimental.

BRASINOFORTE

i) Garantía de Composición:

Composición garantizada	Concentración
Brasinoesteroides	0.006 %
Triacontanol	0.300 %

MATERIALES Y MÉTODOS

LOCALIZACIÓN DEL SITIO EXPERIMENTAL.

El estudio se instaló en una parcela comercial de trigo en el municipio de Pajacuarán, Michoacán.

j) Fecha de inicio del estudio: 08 de diciembre de 2023

k) Fecha de finalización del estudio: 07 de febrero de 2024

I) Cultivo en el que se realizó el estudio:

Trigo Variedad: Salamanca

m) Etapa fenológica de la planta:

Siembra, desarrollo vegetativo y productivo

n) Diseño experimental

1. El experimento se realizó bajo un diseño en bloques completamente al azar, con cuatro repeticiones.

2. La unidad experimental quedó constituida por parcelas de 4 m de ancho por 7 m de largo, equivalente a 28 m² (por unidad experimental), dando un total de 112 m² por tratamiento; es decir 448 m² en total.

o) Distribución de los tratamientos

La distribución de los tratamientos en campo después de una aleatorización quedó como se indica a continuación.

BLOQUE I	BLOQUE II	BLOQUE III	BLOQUE IV
T4	T1	T2	T3
T3	T2	T4	T1
T1	T3	T3	T4
T2	T4	T1	T3

Números arábigos = Tratamientos

n) Dosis, momento y número de aplicaciones

Los tratamientos que se evaluaron se indican en el cuadro 1.

Cuadro 1. Tratamientos de BRASINOFORTE, como regulador de crecimiento, en el cultivo de trigo.

Tatamiento.	Producto	Dosis (mL/ha)	
		1 ^a . (tratamiento semilla)	2ª. (aspersión foliar)
1	Testigo absoluto		
2	Brasinoforte	75	75
3	Brasinoforte	100	100
4	Brasinoforte	150	150
2-4	Agua	500	400,000

La primera aplicación se realizó en tratamiento a la semilla. utilizando 500 mL/ha de agua

La segunda aplicación se realizó de manera foliar a los 30 días después de la primera aplicación.

p) Momento y número de aplicaciones

Se realizaron 2 aplicaciones con un intervalo de 30 días entre cada una.

Formas de aplicación: Se aplicó la primera por tratamiento de semillas y la segunda por aspersión foliar.

Equipo de aplicación

- 1. Tratamiento a la semilla: Botes de capacidad de 5 L.
- 2. Aplicación foliar: Se utilizó una aspersora motorizada con boquilla de cono regulable.

Volumen de agua

- 1. Tratamiento a semilla: en 500 mL/ha de agua
- 2. Aplicación foliar: 400 L.ha

q) Demás insumos utilizados en la evaluación:

No se utilizó otro tipo de insumos que interfiera en el desarrollo de este estudio.

r) Variables de estimación de la efectividad biológica y método de evaluación.

1. Fitotoxicidad. Se evaluó a los 30 días después de la cada aplicación, mediante la escala porcentual propuesta por la European Weed Research Society (Cuadro 2).

Cuadro 2. Escala porcentual propuesta por la European Weed Research Society, para evaluar el

posible efecto fitotóxico del producto BRASINOFORTE en el cultivo de trigo.

EFECTOS SOBRE EL CULTIVO	FITOTOXICIDAD AL CULTIVO (%)
Sin efecto	0.0-1.0
Síntomas muy ligeros	1.1-3.5
Síntomas ligeros	3.6-7.0
Síntomas que no se reflejan en el Rendimiento	7.1-12.5**
Daño medio	12.6-20.0
Daños elevados	20.1-30.0
Daños muy elevados	30.1-50.0
Daños severos	50.1-99.0
Muerte completa	99.1-100

Transformación de la escala porcentual logarítmica de la EWRS a escala porcentual. ** Limite de aceptabilidad.

- **2. Emergencia en charolas (en laboratorio):** Se pusieron 100 semillas por repetición a germinar en el laboratorio, es decir 400 por tratamiento.
- **3. Emergencia en campo:** a los 7 y 14 días después de la siembra se midió el % de emergencia por metro lineal.
- **4. Peso fresco y seco de la raíz:** Se tomaron 3 plantas por unidad experimental a los 14 días después de la siembra y se tomó el peso fresco y seco de la raíz. Los resultados se reportaron en g.
- **5. Diámetro del tallo (mm):** Se midió el tallo con un vernier en tres plantas al azar por unidad experimental (repetición), a los 30 días después de la segunda aplicación. Los resultados se reportaron en mm.
- **6. Altura de la planta (cm):** Se midió con una cinta métrica en tres plantas al azar por unidad experimental (repetición), a los 30 días después de la segunda aplicación. Los resultados se reportaron en cm.
- 7. Contenido de clorofila en hojas. Se tomaron dos hojas en tres plantas por repetición, la cual se midió con el método SPAD, el cual determina la cantidad relativa de clorofila presente a través de la medición de la absorción de las hojas en dos regiones de longitud de onda; en las regiones roja y cercanas a infrarroja. Utilizando estas dos trasmisiones el medidor calcula el valor numérico SPAD que es proporcional a la cantidad de clorofila presente en la hoja y en consecuencia de nitrógeno, a los 30 días después de la segunda aplicación.
- **8.** Peso fresco de la planta. Se tomaron 3 plantas por unidad experimental y se pesaron en una báscula a los 30 días después de la segunda aplicación.

- **9. Peso seco de la planta.** Se tomaron 3 plantas por unidad experimental y se pesaron en una báscula a los 30 días después de la segunda aplicación.
- s) Método de evaluación, el cual debe permitir un análisis estadístico acorde al diseño experimental.

ANALISIS DE DATOS. De los datos obtenidos de las variables: emergencia en charolas, emergencia en campo, peso fresco y seco de la raíz, diámetro del tallo, altura de la planta, contenido de clorofila en hojas, peso fresco de la planta, peso seco de la planta, fueron analizados estadísticamente a través de un análisis de varianza y prueba de comparación de medias de Tukey (α =0.05), mediante el paquete estadístico SAS[®].

t) Tamaño de muestra y método de muestreo. El tamaño de muestra se especificó anteriormente en cada variable.

u) CALENDARIO DE ACTIVIDADES. Se muestra en el cuadro 3.

Cuadro 3. Calendario de actividades del estudio de evaluación de la efectividad biológica del producto BRASINOFORTE en el cultivo de trigo.

ACTIVIDAD	FECHA
1 ^{ra} aplicación semilla y siembra	08 de diciembre de 2023
Evaluaciones de germinación	15 y 22 de diciembre de 2023
2 ^{da} aplicación (foliar) y evaluación fito (30 dd1a)	08 de enero de 2024
Evaluaciones variables de desarrollo y de fito (30 dd1a)	07 de febrero de 204

Dd1a. días después de la primera aplicación

RESULTADOS Y DISCUSIÓN

1. Emergencia en charolas (%)

Se llevó a cabo un análisis de varianza (ANOVA) con los datos de **emergencia en charolas** en el cultivo de trigo, el cual mostró diferencias significativas entre los tratamientos de Brasinoforte con respecto al testigo absoluto. Lo anterior se corroboró al realizar la comparación de medias de Tukey (con $\alpha = 0.05$).

Observándose que el mejor resultado se presentó con Brasinoforte a 100 mL/ha con una media de **99.8%**, mientras que, las dosis de 75 y 150 mL/ha presentaron medias de **97.8 y 99.3%**, respectivamente, en comparación del testigo absoluto con una media de **91.8%** (Cuadro 4)(Figura 1).

Cuadro 4. Evaluación de la variable emergencia en charolas en el cultivo de trigo.

Tratamientos	Emergencia en charolas (%)
T1. Testigo absoluto	91.8 B
T2. Brasinoforte (75 mL/ha)	97.8 A
T3. Brasinoforte (100 mL/ha)	99.8 A
T4. Brasinoforte (150 mL/ha)	99.3 A

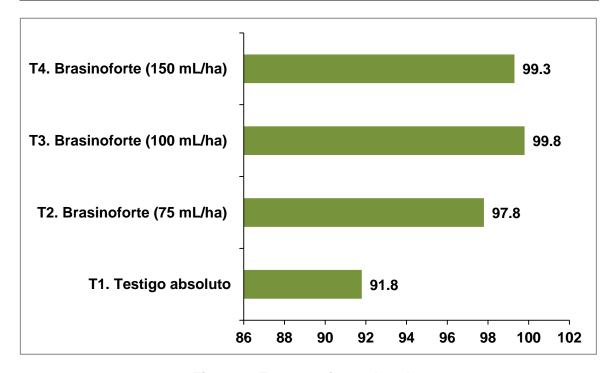


Figura 1. Emergencia en charolas

2. Emergencia en campo

Se llevó a cabo un análisis de varianza (ANOVA) con los datos de **emergencia en campo** en el cultivo de trigo, obtenidos a los **7 dds y 14 dds** el cual mostró diferencias significativas entre los tratamientos de Brasinoforte con respecto al testigo absoluto. Lo anterior se corroboró al realizar la comparación de medias de Tukey (con $\alpha = 0.05$).

Observándose que a los **7 dds** el mejor resultado se presentó con Brasinoforte a 100 mL/ha con una media de **86.3%**, mientras que, las dosis de 75 y 150 mL/ha presentaron medias de **81.3 y 85.0%**, respectivamente, en comparación del testigo absoluto con una media de **61.3%**.

Observándose que a los **14 dds** el mejor resultado se presentó con Brasinoforte a 100 mL/ha con una media de **98.8%**, mientras que, las dosis de 75 y 150 mL/ha presentaron ambas medias de **97.5 %**, en comparación del testigo absoluto con una media de **76.3%** (Cuadro 5)(Figura 2).

Cuadro 5. Evaluación de la variable emergencia en campo en el cultivo de trigo.

Tratamientos	Emergencia en campo	
	7 dds	14 dds
T1. Testigo absoluto	61.3 B	76.3 B
T2. Brasinoforte (75 mL/ha)	81.3 A	97.5 A
T3. Brasinoforte (100 mL/ha)	86.3 A	98.8 A
T4. Brasinoforte (150 mL/ha)	85.0 A	97.5 A

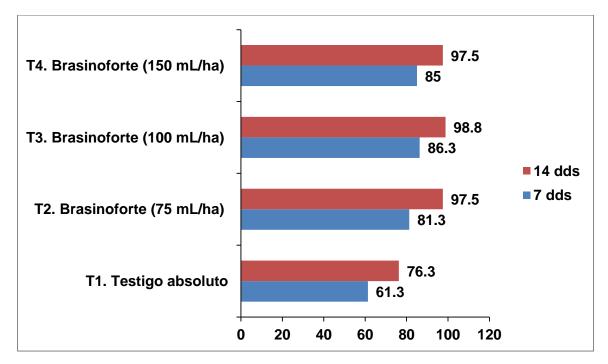


Figura 2. Emergencia en campo.

3. Peso fresco de raíz

Se llevó a cabo un análisis de varianza (ANOVA) con los datos de **peso fresco de raíz** en el cultivo de trigo, el cual mostró diferencias significativas entre los tratamientos de Brasinoforte y el testigo absoluto. Lo anterior se corroboró al realizar la comparación de medias de Tukey (con $\alpha = 0.05$).

Observándose que los mejores resultados se presentaron con Brasinoforte a 75 y 150 mL/ha con una media en ambos de **2.0 g**, mientras que la dosis de 100 mL/ha presentó media de **1.8 g**, en comparación del testigo absoluto con una media de **1.4 g** (Cuadro 6)(Figura 3).

Cuadro 6. Evaluación de la variable peso fresco de raíz en el cultivo de trigo.

Tratamientos	Peso fresco de raíz (g)	
T1. Testigo absoluto	1.4 B	
T2. Brasinoforte (75 mL/ha)	2.0 A	
T3. Brasinoforte (100 mL/ha)	1.8 AB	
T4. Brasinoforte (150 mL/ha)	2.0 A	

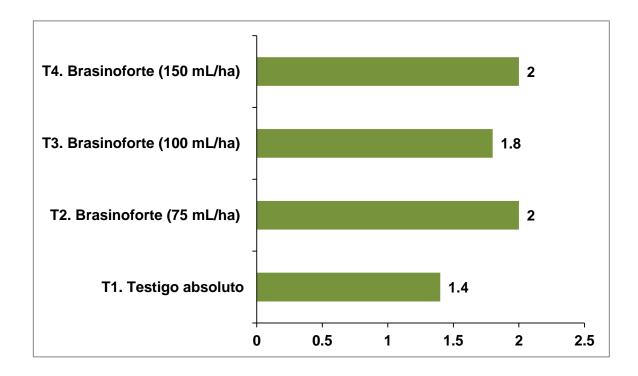


Figura 3. Peso fresco de raíz

4. Peso seco de raíz

Se llevó a cabo un análisis de varianza (ANOVA) con los datos de **peso seco de raíz** en el cultivo de trigo, el cual mostró diferencias significativas entre los tratamientos de Brasinoforte y el testigo absoluto. Lo anterior se corroboró al realizar la comparación de medias de Tukey (con $\alpha = 0.05$).

Observándose que los mejores resultados se presentaron con Brasinoforte a 75 y 150 mL/ha con una media de **0.7 g**, mientras que, las dosis de 100 mL/ha presentó media de **0.6 g**, en comparación del testigo absoluto con una media de **0.5 g** (Cuadro 7)(Figura 4).

Cuadro 7. Evaluación de la variable peso seco de raíz en el cultivo de trigo.

Tratamientos	Peso seco de raíz
T1. Testigo absoluto	0.5 B
T2. Brasinoforte (75 mL/ha)	0.7 AB
T3. Brasinoforte (100 mL/ha)	0.6 AB
T4. Brasinoforte (150 mL/ha)	0.7 A

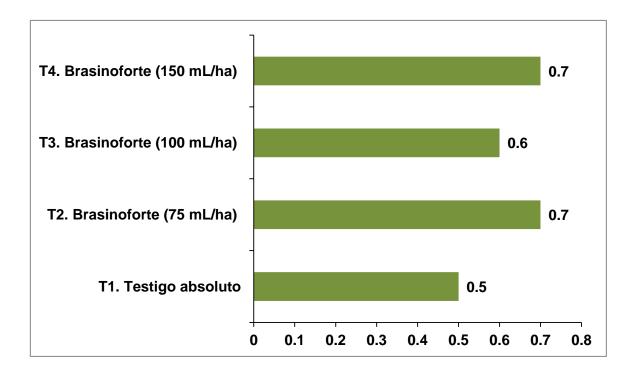


Figura 4. Peso seco de raíz

5. Diámetro del tallo

Se llevó a cabo un análisis de varianza (ANOVA) con los datos de **diámetro del tallo** en el cultivo de trigo, el cual mostró diferencias significativas entre los tratamientos de Brasinoforte y el testigo absoluto y entre algunos tratamientos. Lo anterior se corroboró al realizar la comparación de medias de Tukey (con $\alpha = 0.05$).

Observándose que el mejor resultado se presentó con Brasinoforte a 150 mL/ha con una media de **5.5 mm**, mientras que, las dosis de 75 y 100 mL/ha presentaron medias de **4.4 y 4.2 mm**, respectivamente, en comparación del testigo absoluto con una media de **3.6 mm** (Cuadro 8)(Figura 5).

Cuadro 8. Evaluación de la variable diámetro del tallo en el cultivo de trigo.

Tratamientos	Diámetro del tallo
T1. Testigo absoluto	3.6 C
T2. Brasinoforte (75 mL/ha)	4.4 B
T3. Brasinoforte (100 mL/ha)	4.2 B
T4. Brasinoforte (150 mL/ha)	5.5 A

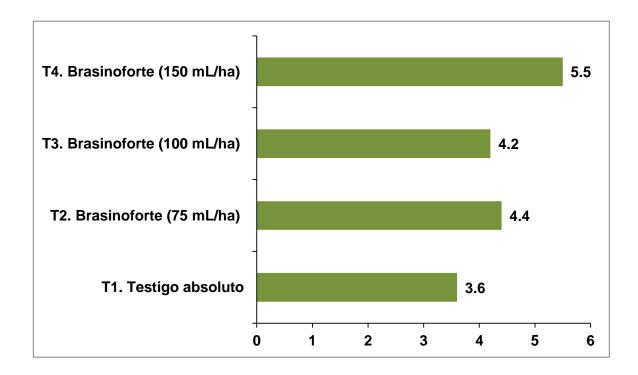


Figura 5. Diámetro del tallo

6. Altura de la planta

Se llevó a cabo un análisis de varianza (ANOVA) con los datos de **altura de la planta** en el cultivo de trigo, el cual mostró diferencias significativas entre los tratamientos de Brasinoforte y el testigo absoluto y entre los primeros. Lo anterior se corroboró al realizar la comparación de medias de Tukey (con $\alpha = 0.05$).

Observándose que el mejor resultado se presentó con Brasinoforte a 150 mL/ha con una media de **86.9 cm**, mientras que, las dosis de 75 y 100 mL/ha presentaron medias de **62.8 y 72.6 cm**, respectivamente, en comparación del testigo absoluto con una media de **56.1 cm** (Cuadro 9)(Figura 6).

Cuadro 9. Evaluación de la variable altura de la planta en el cultivo de trigo.

Tratamientos	Altura de la planta
T1. Testigo absoluto	56.1 D
T2. Brasinoforte (75 mL/ha)	62.8 C
T3. Brasinoforte (100 mL/ha)	72.6 B
T4. Brasinoforte (150 mL/ha)	86.9 A

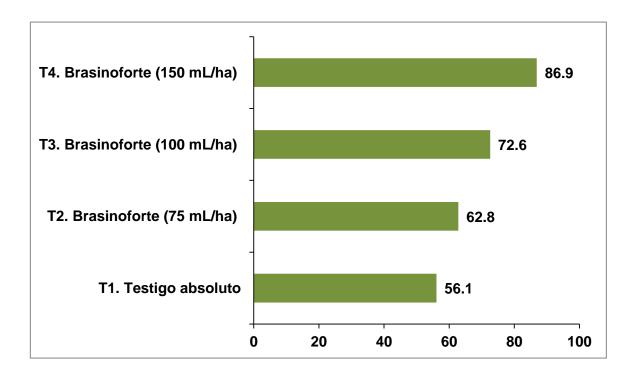


Figura 6. Altura de la planta

7. Contenido de clorofila

Se llevó a cabo un análisis de varianza (ANOVA) con los datos de **contenido de clorofila** en el cultivo de trigo, el cual no mostró diferencias significativas donde se distribuyeron los tratamientos con respecto al testigo absoluto y entre algunos tratamientos. Lo anterior se corroboró al realizar la comparación de medias de Tukey (con $\alpha = 0.05$)(Cuadro 10)(Figura 7).

Cuadro 10. Evaluación de la variable **contenido de clorofila** en el cultivo de trigo (unidades SPAD)..

Tratamientos	Contenido de clorofila
T1. Testigo absoluto	45.2 A
T2. Brasinoforte (75 mL/ha)	45.3 A
T3. Brasinoforte (100 mL/ha)	45.8 A
T4. Brasinoforte (150 mL/ha)	45.3 A

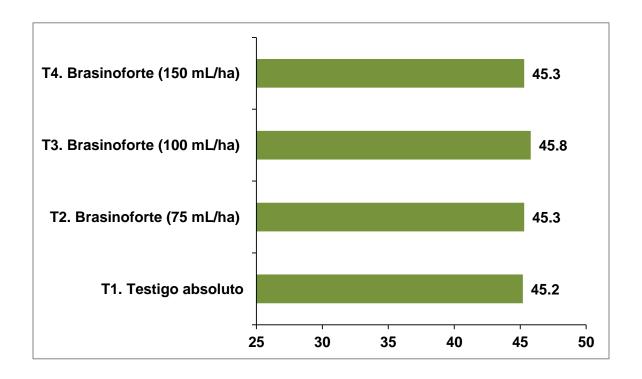


Figura 7. Contenido de clorofila

8. Peso fresco de la planta

Se llevó a cabo un análisis de varianza (ANOVA) con los datos de **peso fresco de la planta** en el cultivo de trigo, el cual mostró diferencias significativas entre los tratamientos de Brasinoforte y el testigo absoluto. Lo anterior se corroboró al realizar la comparación de medias de Tukey (con $\alpha = 0.05$).

Observándose que el mejor resultado se presentó con Brasinoforte a 150 mL/ha con una media de **5.9 g**, mientras que, las dosis de 75 y 100 mL/ha presentaron medias de **5.6 y 5.4 g**, respectivamente, en comparación del testigo absoluto con una media de **4.1 g** (Cuadro 11)(Figura 8).

Cuadro 11. Evaluación de la variable peso fresco de la planta en el cultivo de trigo.

Tratamientos	Peso fresco de la planta
T1. Testigo absoluto	4.1 B
T2. Brasinoforte (75 mL/ha)	5.6 A
T3. Brasinoforte (100 mL/ha)	5.4 A
T4. Brasinoforte (150 mL/ha)	5.9 A

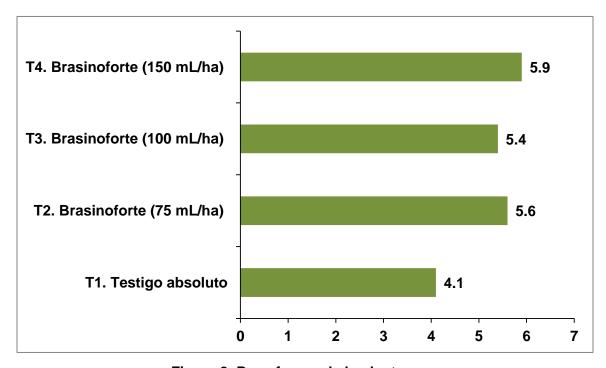


Figura 8. Peso fresco de la planta

9. Peso seco de la planta

Se llevó a cabo un análisis de varianza (ANOVA) con los datos de **peso seco de la planta** en el cultivo de trigo, el cual mostró diferencias significativas entre los tratamientos de Brasinoforte y el testigo absoluto y entre los primeros. Lo anterior se corroboró al realizar la comparación de medias de Tukey (con $\alpha = 0.05$).

Observándose que los mejores resultados se presentaron con Brasinoforte a 100 y 150 mL/ha, ambos con media de **1.9 g**, mientras que, la dosis de 75 mL/ha presentó media de **1.6 g**, en comparación del testigo absoluto con una media de **0.8 g** (Cuadro 11)(Figura 8).

Cuadro 12. Evaluación de la variable peso seco de la planta en el cultivo de trigo.

Tratamientos	Peso seco de la planta		
T1. Testigo absoluto	0.8 D		
T2. Brasinoforte (75 mL/ha)	1.6 B		
T3. Brasinoforte (100 mL/ha)	1.9 A		
T4. Brasinoforte (150 mL/ha)	1.9 A		

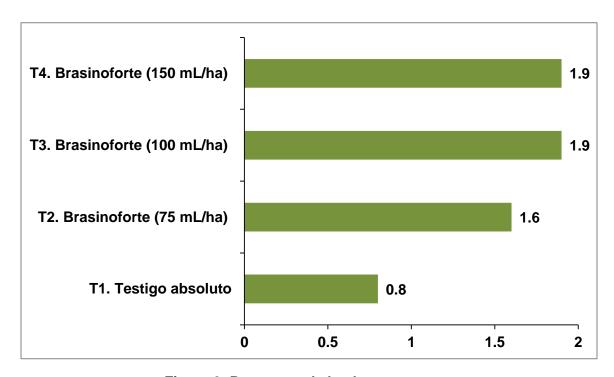


Figura 9. Peso seco de la planta

FITOTOXICIDAD

El producto BRASINOFORTE en dos aplicaciones, una en tratamiento a la semilla y otra en aspersión foliar, a dosis de 75, 100 y 150 mL/ha, no fue fitotóxico en el cultivo de trigo.

CONCLUSIONES

El producto BRASINOFORTE en dos aplicaciones, una en tratamiento a la semilla y otra en aspersión foliar, a dosis de 75, 100 y 150 mL/ha, obtuvo un efecto positivo sobre el crecimiento y en general, mostrando un incremento en la etapa de calidad mediante la evaluación de las variables: emergencia en charolas y campo, peso fresco y seco de raíz, diámetro del tallo, altura de la planta, peso fresco y seco de la planta.

RECOMENDACIONES

Realizar dos aplicaciones del producto BRASINOFORTE, la primera aplicación en tratamiento a la semilla, con dosis de 75, 100 o 150 mL/ha, y la segunda aplicación por aspersión foliar a los 30 días después de la primera aplicación, con las mismas dosis de 75, 100 o 150 mL/ha.

APÉNDICE A

Programas para realizar el Análisis De Varianza Y Prueba De Tukey de las variables del estudio de efectividad biológica de los diferentes productos, en el cultivo de trigo.

ENTRADAS

```
Data:
options ps=500 ls=80 nodate;
input trat blo E EC1 EC2 PFR PSR DT AP CC PFP PSP;
Cards;
1
       1
             90.0
                    55.0
                           65.0
                                 1.7
                                        0.6
                                               3.5
                                                      53.0
                                                             44.6
                                                                   3.7
                                                                          0.7
2
       1
             94.0
                    70.0
                           80.0
                                               4.0
                                                      62.3
                                                             44.8
                                                                   4.0
                                  1.3
                                        0.6
                                                                          1.0
3
       1
             95.0
                    80.0
                           100.0 2.0
                                        0.7
                                               4.4
                                                      64.3
                                                             43.4
                                                                   5.3
                                                                          1.5
                    85.0
4
       1
             99.0
                           95.0
                                 1.8
                                        0.8
                                               4.4
                                                      72.7
                                                             45.0
                                                                   5.3
                                                                          1.8
5
             100.0 90.0
                           100.0 2.0
                                                                          1.9
       1
                                        0.8
                                               5.4
                                                      87.3
                                                             44.7
                                                                   6.3
       2
1
             92.0
                    60.0
                           75.0
                                 1.2
                                               4.0
                                                      57.7
                                                             44.1
                                                                   3.7
                                                                          0.7
                                        0.5
2
       2
                    75.0
                           90.0
             95.0
                                 2.0
                                        0.7
                                               3.8
                                                      62.0
                                                             45.3
                                                                   5.7
                                                                          1.0
                                 1.8
3
       2
                    85.0
                           95.0
                                        0.7
                                                      61.3
                                                             46.6
             98.0
                                               4.4
                                                                   5.3
                                                                          1.6
       2
                                                                   5.7
4
             100.0 90.0
                           100.0 1.9
                                        0.7
                                               3.9
                                                      71.7
                                                             45.6
                                                                          1.8
5
       2
             100.0 85.0
                           100.0 2.0
                                        0.7
                                               5.5
                                                      87.7
                                                             46.6
                                                                          1.9
       3
1
             94.0
                    65.0
                           80.0
                                 1.5
                                        0.5
                                               3.7
                                                      56.3
                                                             45.5
                                                                   4.7
                                                                          0.8
2
       3
             96.0
                   80.0
                           95.0
                                 1.7
                                        0.6
                                               4.0
                                                      65.7
                                                             45.3
                                                                   4.0
                                                                          1.1
3
       3
                    80.0
                           100.0 1.9
                                                             45.9
             98.0
                                        0.8
                                               4.4
                                                      63.0
                                                                   6.0
                                                                          1.7
       3
             100.0 80.0
                           100.0 1.9
                                                      72.0
                                                             45.4
4
                                        0.5
                                               4.1
                                                                   5.7
                                                                          1.9
5
       3
             99.0
                    80.0
                           95.0
                                 2.0
                                        0.7
                                               5.2
                                                      86.3
                                                             45.8
                                                                          2.0
                                                                   5.7
1
                           85.0
                                  1.2
                                                      57.3
                                                             46.6
       4
             91.0
                    65.0
                                        0.5
                                               3.3
                                                                   4.3
                                                                          0.8
       4
             95.0
                    85.0
                           90.0
                                  1.7
                                        0.6
                                               4.3
                                                      65.0
                                                             44.5
                                                                   4.3
                                                                          1.1
3
       4
             100.0 80.0
                           95.0
                                 2.1
                                        0.5
                                               4.4
                                                      62.7
                                                             45.3
                                                                   5.7
                                                                          1.6
4
             100.0 90.0
                           100.0 1.6
                                        0.6
                                               4.4
                                                      74.0
                                                             47.2
                                                                   5.0
                                                                          2.0
5
             98.0 85.0
                           95.0 2.0
                                        0.7
                                               5.8
                                                      86.3
                                                             44.3
                                                                          1.8
Proc anova;
class trat blo;
model E EC1 EC2 PFR PSR DT AP CC PFP PSP = trat blo;
means trat/tukey;
Title "variables";
Run;
```

SALIDAS

```
variables
                               Procedimiento ANOVA
                          Información del nivel de clase
                        Clase
                                     Niveles
                                                 Valores
                                                 1 2 3 4 5
                        trat
                                            4
                                                 1 2 3 4
                          Número de observaciones
                                    variables
                               Procedimiento ANOV
Variable dependiente: E
                                                   Cuadrado de
                                       Suma de
 Fuente
                             DF
                                     cuadrados
                                                      la media
                                                                 F-Valor
                                                                            Pr > F
                                                    26.6000000
Modelo
                                   186,2000000
                                                                    17.73
                                                                            <.0001
Error
                             12
                                    18.0000000
                                                     1.5000000
 Total correcto
                                   204.2000000
              R-cuadrado
                               Coef Var
                                              Raiz MSF
                                                             F Media
                0.911851
                               1.266541
                                              1.224745
                                                            96.70000
                                                   Cuadrado de
                             DF
 Fuente
                                      Anova SS
                                                      la media
                                                                 F-Valor
```

trat	4	177.2000000	44.3000000	29.53	<.0001
blo	3	9.0000000			
510		variables	3.000000		0.120.0
	Pro	cedimiento A	ANOVA		
Variable dependiente: EC1					
·		Suma de	e Cuadrado de	!	
Fuente	DF	cuadrados	s la media	F-Valor	Pr > F
Modelo	7	1706.250000	243.750000	11.36	0.0002
Error	12	257.500000	21.458333		
Total correcto	19	1963.750000	9		
R-cuadrado	Coe	f Var F	Raiz MSE EC1	Media	
0.868873	5.9	19890 4	1.632314 78	.25000	
			Cuadrado de		
Fuente	DF	Anova SS	la media	F-Valor	Pr > F
trat	4	1632.500000	408.125000	19.02	<.0001
blo	3	73.750000			0.3703
	_	variables			
	Pro	cedimiento A			
Variable dependiente: EC2					
variable aepenalence. Let		Suma de	e Cuadrado de		
Fuente	DF	cuadrados			Pr > F
Modelo	7	1561.250006			0.0006
Error	12	302.50000			0.0000
Total correcto	19	1863.750006			
R-cuadrado			Raiz MSE EC2	Modia	
0.837693				.75000	
0.837093	5.4	/2251	Cuadrado de		
Fuente	DF	Anous C			Dn . F
Fuente		Anova SS		F-Valor	
trat	4	1457.500000			0.0002
blo	3	103.750000		1.37	0.2985
	D	variables			
Vaniable demonstrates DED	Pro	cedimiento A	ANOVA		
Variable dependiente: PFR		C			
Firest	DE	Suma de			D
Fuente	DF	cuadrados			
Modelo	7	0.94550000			0.0405
Error	12	0.52000000			
Total correcto	19	1.46550000			
R-cuadrado				Media	
0.645172	11.	79414 6		765000	
			Cuadrado de		
Fuente	DF	Anova SS			
trat	4	0.92800000			0.0104
blo	3	0.01750000	0.00583333	0.13	0.9375
	_	variables			
	Pro	cedimiento A	ANOVA		
Variable dependiente: PSR					
		Suma de			
Fuente	DF _	cuadrados			
Modelo	7	0.12800000			0.0599
Error	12	0.0800000			
Total correcto	19	0.20800000			
R-cuadrado				Media	
0.615385	12.	75776		640000	
			Cuadrado de		
Fuente	DF	Anova SS			Pr > F
trat	4	0.0880000	0.02200000	3.30	0.0483
blo	3	0.0400000	0.01333333	2.00	0.1678
		variables			
	Pro	cedimiento A	ANOVA		
Variable dependiente: DT					
		Suma de			
Fuente	DF	cuadrados	s la media	F-Valor	Pr > F
Modelo	7	7.75650000	1.10807143	19.19	<.0001
Error	12	0.69300000	0.05775000	1	
Total correcto	19	8.44950000	9		
R-cuadrado	Coe	f Var 🛮 F	Raiz MSE DT	Media	
0.917983	5.5	30778		345000	
			Cuadrado de	!	

Fuente	DF	Anova SS	la media	F-Valor	Pr > F
trat	4	7.68700000	1.92175000	33.28	<.0001
blo	3	0.06950000	0.02316667	0.40	0.7548
		variables			
	Pr	ocedimiento A	NOVA		
Variable dependiente: AP					
·		Suma de	Cuadrado de		
Fuente	DF	cuadrados	la media	F-Valor	Pr > F
Modelo	7	2262.139000			<.0001
Error	12	29.22300	2.435250	232170	
Total correcto	19	2291.362000	2.155250		
R-cuadrado			aiz MSE AP	Media	
0.987246					
0.987246	۷.	280475 1		.43000	
			Cuadrado de		
Fuente	DF	Anova SS		F-Valor	Pr > F
trat	4	2257.977000	564.494250		<.0001
blo	3	4.162000	1.387333	0.57	0.6455
		variables			
	Pr	ocedimiento A	NOVA		
Variable dependiente: CC					
		Suma de	Cuadrado de		
Fuente	DF	cuadrados	la media	F-Valor	Pr > F
Modelo	7	6.00950000		0.91	0.5287
Error	12	11.28800000	0.94066667	0.71	0.3207
Total correcto	19	17.29750000	0.54000007		
			-:- MCE CC	Madia	
R-cuadrado				Media	
0.347420	۷.	139834 0		.32500	
			Cuadrado de	_	
Fuente	DF	Anova SS	la media		Pr > F
trat	4	1.46000000	0.36500000	0.39	0.8132
blo	3	4.54950000	1.51650000	1.61	0.2384
		variables			
	Pr	ocedimiento A	NOVA		
Variable dependiente: PFP					
•		Suma de	Cuadrado de		
Fuente	DF	cuadrados	la media	F-Valor	Pr > F
Modelo	7	9.80050000	1.40007143		0.0072
Error	12	3.32900000	0.27741667	3.03	0.0072
Total correcto	19	13.12950000	0.27741007		
			-:- MCF DFD	Madia	
R-cuadrado				Media	
0.746449	10	.31741 0		L05000	
			Cuadrado de	_	
Fuente	DF	Anova SS	la media	F-Valor	Pr > F
trat	4	9.48700000	2.37175000	8.55	0.0017
blo	3	0.31350000	0.10450000	0.38	0.7715
		variables			
	Pr	ocedimiento A	VOV		
Variable dependiente: PSP					
		Suma de	Cuadrado de		
Fuente	DF	cuadrados	la media	F-Valor	Pr > F
Modelo	7	4.26350000	0.60907143	174.02	<.0001
Error	12	0.04200000	0.00350000	2702	
Total correcto	19	4.30550000	0.00330000		
R-cuadrado			aiz MSE PSP	Media	
0.990245					
0.990245	4.	122704 0		135000	
			Cuadrado de	- W 3	
Fuente	DF	Anova SS	la media	F-Valor	Pr > F
trat	4	4.21800000	1.05450000	301.29	<.0001
blo	3	0.04550000	0.01516667	4.33	0.0275
		variables			
		ocedimiento AM			
Prueba del r	ango e	studentizado d	de Tukey (HSD) p	oara E	
NOTA: Este test controla	el ín	dice de error	experimentwise	de tipo I,	pero
normalmente tiene un					
Alfa				.05	-
	grados	de libertad	•	12	
Error de			1	1.5	
			dentizado 4.507		
Diferencia significativa mínima 2.7603					

```
Media
        Tukey Agrupamiento
                                              Ν
                                                   trat
                                 99.7500
                         Α
                                              4
                                                   4
                                 99.2500
                         Α
                                              4
                                                   5
                    В
                                 97.7500
                                              4
                                                   3
                    В
                                 95.0000
                                              4
                                                   2
                         C
                                 91.7500
                                                   1
                                 variables
                            Procedimiento ANOVA
           Prueba del rango estudentizado de Tukey (HSD) para EC1
NOTA: Este test controla el índice de error experimentwise de tipo I, pero
   normalmente tiene un índice de error de tipo II más elevado que REGWQ.
               Alfa
                                                          0.05
               Error de grados de libertad
                                                           12
               Error de cuadrado medio
                                                     21.45833
               Valor crítico del rango estudentizado 4.50760
               Diferencia significativa mínima
                                                        10.44
       Medias con la misma letra no son significativamente diferentes.
                                            N
      Tukey Agrupamiento
                                 Media
                                                 trat
                                86.250
                                            4
                                                 4
                       Α
                                85.000
                                                 5
                       Α
                                            4
                       Α
                                81.250
                                            4
                                                 3
                                77.500
                       Α
                                            4
                                                 2
                                61.250
                                                 1
                                 variables
                            Procedimiento ANOVA
           Prueba del rango estudentizado de Tukey (HSD) para EC2
NOTA: Este test controla el índice de error experimentwise de tipo I, pero
   normalmente tiene un índice de error de tipo II más elevado que REGWQ.
               Alfa
                                                          0.05
               Error de grados de libertad
                                                           12
               Error de cuadrado medio
                                                     25.20833
               Valor crítico del rango estudentizado 4.50760
               Diferencia significativa mínima
                                                       11.316
      Medias con la misma letra no son significativamente diferentes.
      Tukey Agrupamiento
                                 Media
                                            N
                                                 trat
                                98.750
                                            4
                                                 4
                       Α
                       Α
                                97.500
                                            4
                                                 5
                                97.500
                                            4
                       Α
                                                 3
                                88.750
                       Α
                                            4
                                                 2
                       R
                                76.250
                                            4
                                                 1
                                 variables
                            Procedimiento ANOVA
           Prueba del rango estudentizado de Tukey (HSD) para PFR
NOTA: Este test controla el índice de error experimentwise de tipo I, pero
  normalmente tiene un índice de error de tipo II más elevado que REGWQ.
               Alfa
                                                          0.05
               Error de grados de libertad
                                                           12
               Error de cuadrado medio
                                                     0.043333
               Valor crítico del rango estudentizado 4.50760
               Diferencia significativa mínima
                                                       0.4692
      Medias con la misma letra no son significativamente diferentes.
        Tukey Agrupamiento
                                   Media
                                              N
                                                   trat
                         Α
                                  2.0000
                                              1
                                                   5
                         Δ
                                  1.9500
                                              4
                                                   3
                    В
                         Α
                                  1.8000
                                              4
                                                   4
                                  1.6750
                    В
                                                   2
                         Α
                                  1.4000
                                 variables
                            Procedimiento ANOVA
           Prueba del rango estudentizado de Tukey (HSD) para PSR
NOTA: Este test controla el índice de error experimentwise de tipo I, pero
  normalmente tiene un índice de error de tipo II más elevado que REGWQ.
                                                         0.05
               Error de grados de libertad
                                                           12
               Error de cuadrado medio
                                                     0.006667
               Valor crítico del rango estudentizado 4.50760
               Diferencia significativa mínima
                                                        0.184
      Medias con la misma letra no son significativamente diferentes.
```

Medias con la misma letra no son significativamente diferentes.

```
Tukey Agrupamiento
                                   Media
                                                   trat
                                 0.72500
                                                   5
                         Α
                         Α
                                 0.67500
                                                   3
                    В
                                 0.65000
                         Α
                                                   4
                    В
                         Α
                                 0.62500
                                                   2
                    В
                                 0.52500
                                                   1
                                 variables
                            Procedimiento ANOVA
           Prueba del rango estudentizado de Tukey (HSD) para DT
NOTA: Este test controla el índice de error experimentwise de tipo I, pero
   normalmente tiene un índice de error de tipo II más elevado que REGWQ.
               Alfa
                                                         0.05
               Error de grados de libertad
                                                           12
               Error de cuadrado medio
                                                      0.05775
               Valor crítico del rango estudentizado 4.50760
               Diferencia significativa mínima
                                                       0.5416
     Medias con la misma letra no son significativamente diferentes.
                                   Media
        Tukey Agrupamiento
                                              N
                                                   trat
                                  5.4750
                                              4
                                                   5
                         Α
                         В
                                  4.4000
                                              4
                                                   3
                                  4.2000
                         В
                                              4
                                                   4
                                  4.0250
                    C
                         В
                                                   2
                    C
                                  3.6250
                                                   1
                                 variables
                            Procedimiento ANOVA
           Prueba del rango estudentizado de Tukey (HSD) para AP
NOTA: Este test controla el índice de error experimentwise de tipo I, pero
  normalmente tiene un índice de error de tipo II más elevado que REGWQ.
               Alfa
                                                         0.05
               Error de grados de libertad
                                                           12
               Error de cuadrado medio
                                                      2.43525
               Valor crítico del rango estudentizado 4.50760
               Diferencia significativa mínima
                                                       3.5171
      Medias con la misma letra no son significativamente diferentes.
      Tukey Agrupamiento
                                Media
                                            N
                                                 trat
                       Α
                                86.900
                                            4
                                                 5
                       В
                                72.600
                                            4
                                                 4
                       C
                                63.750
                                            4
                                                 2
                                62.825
                       r
                                            4
                                                 3
                                56.075
                                                 1
                                 variables
                            Procedimiento ANOVA
           Prueba del rango estudentizado de Tukey (HSD) para CC
NOTA: Este test controla el índice de error experimentwise de tipo I, pero
  normalmente tiene un índice de error de tipo II más elevado que REGWQ.
               Alfa
                                                         0.05
               Error de grados de libertad
                                                           12
               Error de cuadrado medio
                                                     0.940667
               Valor crítico del rango estudentizado 4.50760
               Diferencia significativa mínima
                                                       2.1859
       Medias con la misma letra no son significativamente diferentes.
      Tukey Agrupamiento
                                 Media
                                            Ν
                                                 trat
                               45.8000
                                            4
                                                 4
                       Α
                               45.3500
                       Α
                                            4
                                                 5
                       Α
                               45.3000
                                            4
                                                 3
                       Α
                               45.2000
                                            4
                                                 1
                               44.9750
                                            4
                                                 2
                       Α
                                 variables
                            Procedimiento ANOVA
           Prueba del rango estudentizado de Tukey (HSD) para PFP
NOTA: Este test controla el índice de error experimentwise de tipo I, pero
   normalmente tiene un índice de error de tipo II más elevado que REGWQ.
               Alfa
                                                         0.05
               Error de grados de libertad
                                                           12
               Error de cuadrado medio
                                                     0.277417
               Valor crítico del rango estudentizado 4.50760
               Diferencia significativa mínima
                                                       1.1871
      Medias con la misma letra no son significativamente diferentes.
```

Media

N

trat

Tukey Agrupamiento

	A	4	5.9250	4	5		
	В 4	4	5.5750	4	3		
	В А	4	5.4250	4	4		
	В	2	4.5000	4	2		
	(2	4.1000	4	1		
		,	variables				
		Proce	dimiento A	AVOV			
Prueba d	el rang	go estud	entizado de	e Tukey	/ (HSD) pa	ara PSP	
NOTA: Este test con	trola e	l índic	e de error	exper	imentwise	de tipo	I, perd
normalmente tien	e un ír	ndice de	error de f	tipo II	[más ele	vado que	REGWQ.
Alfa					0	.05	
Erro	libertad			12			
Erro	medio		0.0	2 35			
Valo	r críti	ico del i	rango estud	dentiza	ado 4.50	760	
Dife	rencia	signifi	cativa mín:	ima	0.1	333	
Medias con l	a misma	a letra i	no son sig	nificat	ivamente	diferent	ces.
Tukey Agrupam	iento	ı	Media	N 1	rat		
, ,	Α	1.9	90000	4 5	5		
	Α	1.8	87500	4 4	1		
	В	1.0	60000	4 3	3		
	С	1.0	05000	4 2	2		
	D	0.	75000	4 :	L		

APÉNDICE B

Condiciones climáticas prevalecientes durante el desarrollo del estudio instalado, en el municipio de Pajacuarán, Michoacán.

cuaran, michoacan.	
Fecha	Temperatura (°C)
	Mín. / Máx
08/12/2022	9 / 27
09/12/2022	9 / 29
10/12/2022	9 / 24
11/12/2022	11 / 18
12/12/2022	7 / 24
13/12/2022	8 / 23
14/12/2022	8 / 24
15/12/2022	11 / 26
16/12/2022	9 / 28
17/12/2022	9 / 28
18/12/2022	7 / 28
19/12/2022	8 / 28
20/12/2022	9 / 29
21/12/2022	9 / 27
22/12/2022	10 / 27
23/12/2022	9 / 26
24/12/2022	12 / 25
25/12/2022	9 / 24
26/12/2022	10 / 18
27/12/2022	9 / 24
28/12/2022	6 / 24
29/12/2022	6 / 25
30/12/2022	6 / 25
31/12/2022	6 / 25
01/01/2023	6 / 26
02/01/2023	8 / 24

03/01/2023 04/01/2023 05/01/2023 06/01/2023 07/01/2023 08/01/2023 10/01/2023 11/01/2023 12/01/2023 13/01/2023 15/01/2023 15/01/2023 16/01/2023 17/01/2023 18/01/2023 19/01/2023 20/01/2023 21/01/2023 22/01/2023 23/01/2023	7 / 28 5 / 25 7 / 26 9 / 28 9 / 29 9 / 28 10 / 27 8 / 28 11 / 25 9 / 28 13 / 26 8 / 27 7 / 26 8 / 27 7 / 26 8 / 27 9 / 28 9 / 29 8 / 29 7 / 27 9 / 28
24/01/2023	8 / 26
25/01/2023 26/01/2023	7 / 29 9 / 27
27/01/2023	8 / 27
28/01/2023	8 / 27
29/01/2023	12 / 30
30/01/2023	9 / 30
31/01/2023	11 / 30
01/02/2023	10 / 29
02/02/2023	9 / 29
03/02/2023 04/02/2023	10 / 28 9 / 28
05/02/2023	9 / 26 8 / 31
06/02/2023	8/30
07/02/2023	10 / 29